Chapter 3 Proteins Outline

- Classification of proteins
- The basic building blocks of proteins—Amino acids
- Structure of proteins
- Structure and function relationships of proteins
- Properties of proteins
- Separation, purification and determination of proteins

What are proteins?

Proteins are macromolecules composed of amino acids linked together through peptide bonds, which have a stable conformation and a certain biological function.

Proteins are linear polymers聚合物 built of monomer单体 units called amino acids.

Section 1 Classification of proteins

- **1. Chemical Components of Proteins**
- **Major** elements: <u>C, H, O, N</u>, S
- **Trace** elements: P, Fe, Cu, Zn, Mo, I, ...
- The average nitrogen content in proteins is about 16%, and proteins are the major source of N in biological systems.

Section 1 Classification of proteins

- **1. Chemical Components of Proteins**
- ◆The protein quantity can be estimated----Kjeldahl determination(凯氏定氮法)
- **\diamond** protein in 100g sample = N per gram \times 6.25 \times 100

2. Protein Classification

Classification based on the overall shape

Globular protein(球状蛋白质):

globular or ellipsoidal (long/short <10), soluble in water; including enzymes, transportors, receptors, regulators, ...

Fibrous protein(纤维状蛋白质):

highly elongated; insoluble in water; including collagen (胶原蛋白), elastin (弹性蛋白), α-keratin (α-角蛋白),...

Classification based on chemical compositions

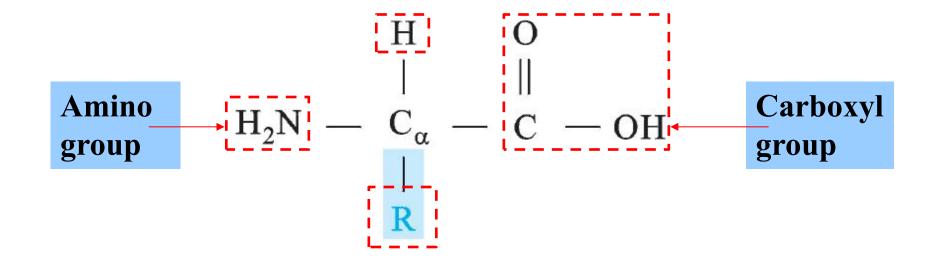
Simple protein(简单蛋白质):

made up of amino acids completely, without nonprotein components

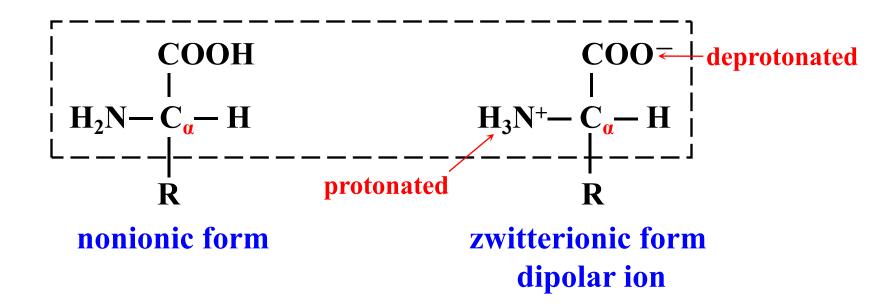
Conjugated protein (缀合蛋白质): conjugated protein = apoprotein + prosthetic groups Prosthetic group (辅基) is non-protein part, binding to protein by covalent bond. This group can be carbohydrates, lipids, nucleic acids, phosphates, pigments (色素), or metal ions.

Category of conjugated proteins

Category (类别)	Prosthetic group (辅基)	Example(举例)
Nucleoprotein (核蛋白)	nucleic acids	Chromosome, ribosome
Glycoprotein (糖蛋白)	carbohydrates	Immunoglobulin (Ig)
Lipoprotein (脂蛋白)	lipids	High-density lipoprotein
Phosphoprotein (磷蛋白)	phosphates	Casein (酪蛋白)
Chromoprotein (色蛋白)	pigments	Hemoglobin(血红蛋白Hb)
Metalloprotein (金属蛋白)	metal ions	Ferritin(铁蛋白), calmodulin(钙调蛋白)


Classification based on biological functions

- ✤ Enzymes Ribonuclease (核糖核酸酶)
- **Regulatory proteins Insulin and growth hormone**
- ♦ Storage proteins ovalbumin (卵清蛋白)
- ♦ Defensive and protective proteins Antibody, toxin (毒素)
- **Transport protein Hemoglobin**
- Structural proteins α-keratin, Collagen
- ♦ Contractile proteins Actin (肌动蛋白), Myosin (肌球蛋白)


Section 2

Protein architecture — Amino acids

- 1. General structure of common amino acid (AA)
- The basic building blocks of proteins
- About 300 types of AAs in nature, but only 20 types are used for protein synthesis in biological systems.
- A typical α-amino acid has an amino group, a carboxyl group, a hydrogen atom and a side-chain (R group) attached to the same carbon atom (C_α)

Different side-chain (R group) Different chemical and physical properties

- Except for proline, all 19 of the common AAs are αamino acids; Proline is an α-imino acids.
- The α-carbon atom is always asymmetric or chiral center except in glycine, hence, all amino acids are optical activity(旋光性) and have two stereoisomers (mirror-image forms) (D or L configuration).

The two stereoisomers of each AA are designated by D, L system according to the D- and Lglyceraldehyde

> ¹CHO CHO HO-2C-H H-C-OH ³CH₂OH CH_2OH L-Glyceraldehyde D-Glyceraldehyde H_3N H-C-NH₃ С-Н ${\buildrel {\buildrel {C} {H}_3}}$ CH_3 D-Alanine L-Alanine

- Only the L-AAs have been found in proteins
- D-isomers have been found only in small peptides of bacteria cell walls or in some peptide antibiotics
- ◆ Racemate(外消旋物): An equimolar mixture of the
 - **D- and L-isomers of an optically active compound.**
- **A racemic mixture shows no optical activity.**

2. Amino acid classification

Standard amino acids (common AAs, proteinogenic AAs)

Nonstandard amino acids

Non-protein amino acids

Standard amino acids

Commonly found in proteins

Encoded by genetic codes and directly introduced into protein during translation

- **Oiffer in side chain (R group)**
- 20 commonly found

◆2 rarely found (selenocysteine and pyrrolysine) (硒代半胱氨酸, Sec, U) (吡咯赖氨酸, Pyl, O)

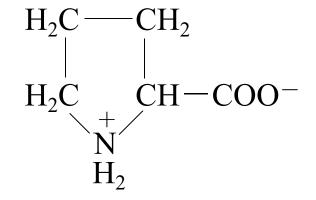
Classification of the standard amino acids

- By chemical structure of R groups Aliphatic amino acids: 15 Aromatic amino acids: 3 Heterocyclic amino acids: 3
- By acid-base properties Neutral amino acids: 15 Acidic amino acids: 2 Basic amino acids: 3

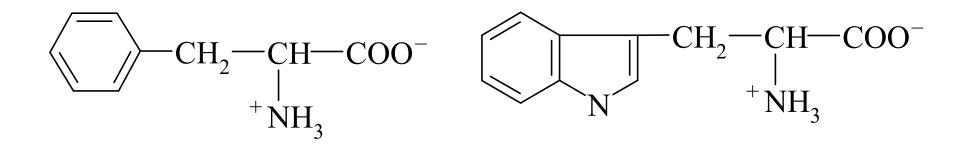
 - By the polarity of R groups [Non-polar amino acids: 9 Polar amino acids: 11

Non-polar R groups amino acids

(1)Alanine (Ala, A) (2) Valine (Val, V) $CH_3 - CH - COO^-$ +NH3


 $CH_3 - CH - CH - COO^ CH_3 + NH_3$

(3)Leucine (Leu, L) $\begin{array}{c} CH_{3}-CH-CH_{2}-CH-COO^{-}\\ |\\ CH_{3} \end{array}$


(4)Isoleucine (Ile, I)

$$CH_3 - CH_2 - CH - CH - COO^{-1}$$

 $| | | CH_3 + NH_3$

(5)Proline (Pro, P)

(6)Phenylalanine (Phe, F) (7)Tryptophan (Trp, W)

(8)Methionine (蛋氨酸, Met, M) (9)Glycine (Gly, G) $CH_2-CH_2-CH-COO^ |_{NH_3}$ $H-CH-COO^ |_{NH_3}$

Polar, uncharged R groups amino acids (10)Serine (Ser, S) (11)Threonine (Thr, T) $CH_3 - CH - CH - COO^ CH_2 - CH - COO^-$ OH +NH₃ OH +NH₃ (12)Cysteine (Cys, C) (13) Tyrosine (Tyr, Y) $HS-CH_2-CH-COO^ CH_2 - CH - COO^-$ + NH_3 HO $+NH_3$ (15)Glutamine (Gln, Q) (14) Asparagine (Asn, N) \mathbf{O} \mathbf{O}

$$\begin{array}{c} H_2 N - \stackrel{||}{C} - C H_2 - C H - C O O^{-} \\ + \stackrel{||}{N} H_3 \end{array} \xrightarrow{} \begin{array}{c} H_2 N - \stackrel{||}{C} - C H_2 - C H_$$

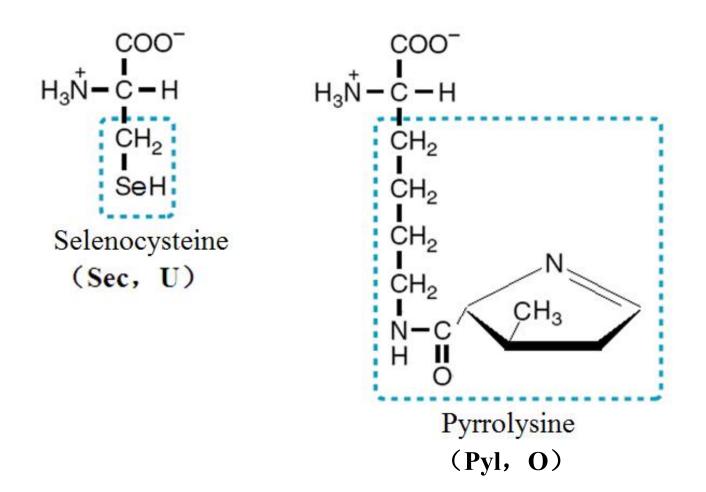
Polar, negatively charged R groups amino acids (16)Aspartic acid (Asp, D) (17)Glutamic acid (Glu, E) -OOC-CH₂-CH-COO- -OOC-CH₂-CH₂-CH-COO-+NH₃

Polar, positively charged R groups amino acids (18)Lysine (Lys, K) H_3 ⁺N-CH₂-CH₂-CH₂-CH₂-CH₂-CH-COO- $+NH_3$ (19) Arginine (Arg, R) $\stackrel{+\mathrm{NH}_2}{\mathrm{H}_2\mathrm{N}-\overset{||}{\mathrm{C}-\mathrm{NH}-\mathrm{CH}_2-\mathrm{CH}_2-\mathrm{CH}_2-\mathrm{CH}-\mathrm{COO}-}_{\overset{|}{\mathrm{L}}\mathrm{NH}}$ $+NH_3$ (20) Histidine (His, H) $\begin{array}{c} HC = C - CH_2 - CH - COO^- \\ | & | & | \\ HN & NH & + NH_3 \\ + C & C \end{array}$

According to whether Essential amino acids it can be synthesized Nonessential amino acids

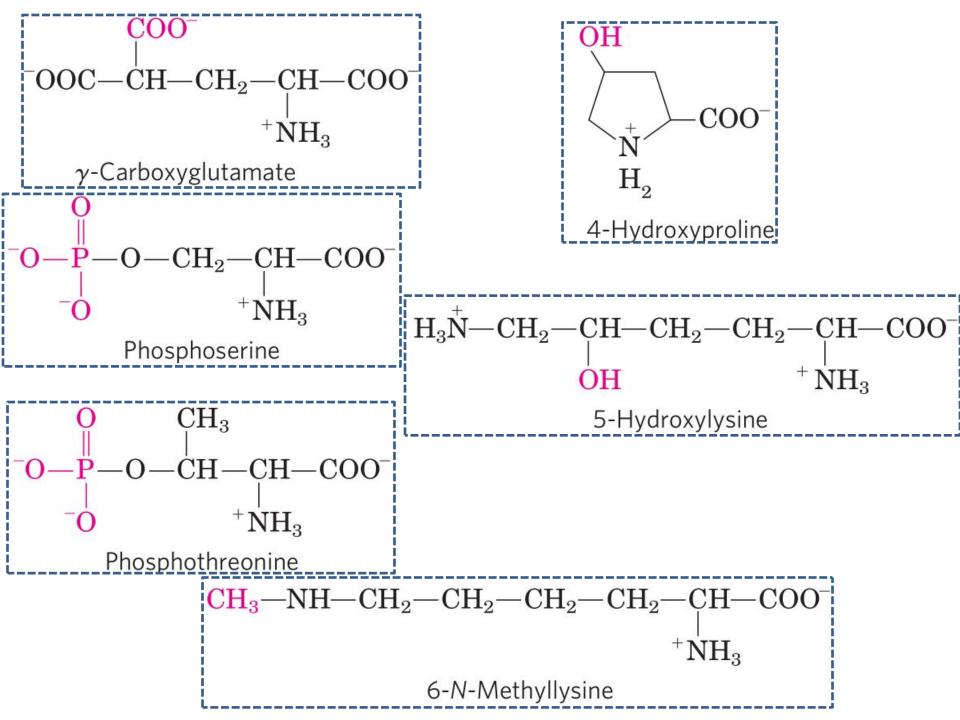
Essential amino acids (or indispensable AAs)

- Cannot be synthesized by the humans, must be supplied in the diet
- 8: Val, Ile, Leu, Phe, Met, Trp, Thr, Lys


Semi-essential amino acids

- 2: His and Arg
- Required by infants and growing children

Essential and Nonessential Amino Acids in Humans		
Essential	Nonessential	
Arginine*	Alanine	
Histidine*	Asparagine	
Isoleucine	Aspartic acid	
Leucine	Cysteine	
Lysine	Glutamic acid	
Methionine	Glutamine	
Phenylalanine	Glycine	
Threonine	Proline	
Tryptophan	Serine	
Valine	Tyrosine	


*Arginine and histidine are essential in the diets of juveniles, not adults.

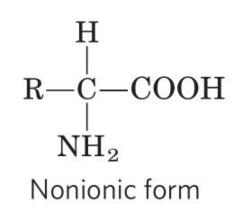
21st & 22nd AAs

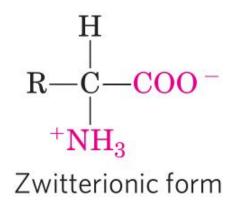
Nonstandard amino acids

- Occur only rarely in proteins
- Amino acid derivatives found in proteins
- formed by post-translational modification
- γ-Carboxyglutamate (carboxylation of glutamate) found in the blood-clotting protein prothrombin, allows for better binding of calcium cations.
- collagen contain 4-hydroxyproline and and 5-hydroxylysine, generated by hydroxylation of proline and lysine respectively.

Non-protein amino acids

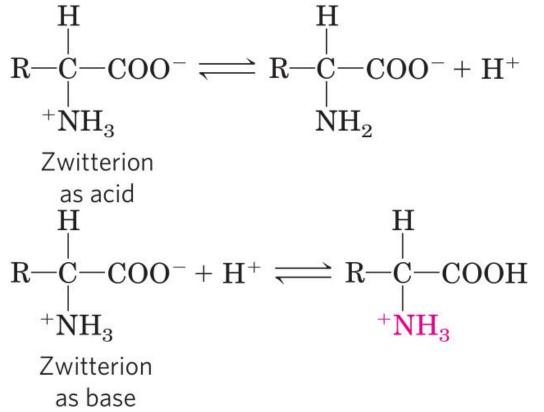
- Present in living organisms, but Not found in proteins
- **\diamond** some are β -AA, γ -AA, or D-AA, etc
- Never directly introduced into proteins during translation
- Can be naturally-occurring or chemical modifications of standard AAs

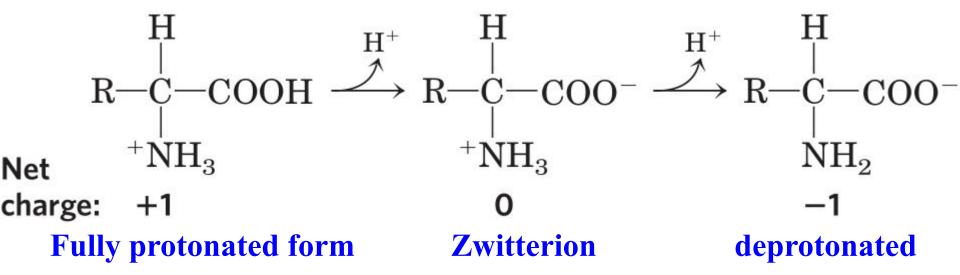

 $\begin{array}{c} CH_2-CH_2-COO^- & CH_3-CH-CH_2-COOH \\ + NH_3 & NH_2 \\ \beta-Alanine & \beta-aminobutyric acid \end{array}$


 $\begin{array}{cccc} \mathrm{HO-CH_2-CH_2-CH-COOH} & \mathrm{HS-CH_2-CH_2-CH-COOH} \\ & \mathrm{NH_2} & \mathrm{NH_2} \\ & \mathrm{Homoserine} & \mathrm{Homocysteine} \end{array}$

$$H_3$$
⁺M-CH₂-CH₂-CH₂-CH₂-CH-COO⁻
+ NH₃
Ornithine

 $\begin{array}{cccccccc} H_2N-C-N-CH_2-CH_2-CH_2-CH-COO^- \\ \parallel & \parallel \\ O & H & & + \\ & & & + \\ & & & + \\ & & & + \\ & & & \\ &$

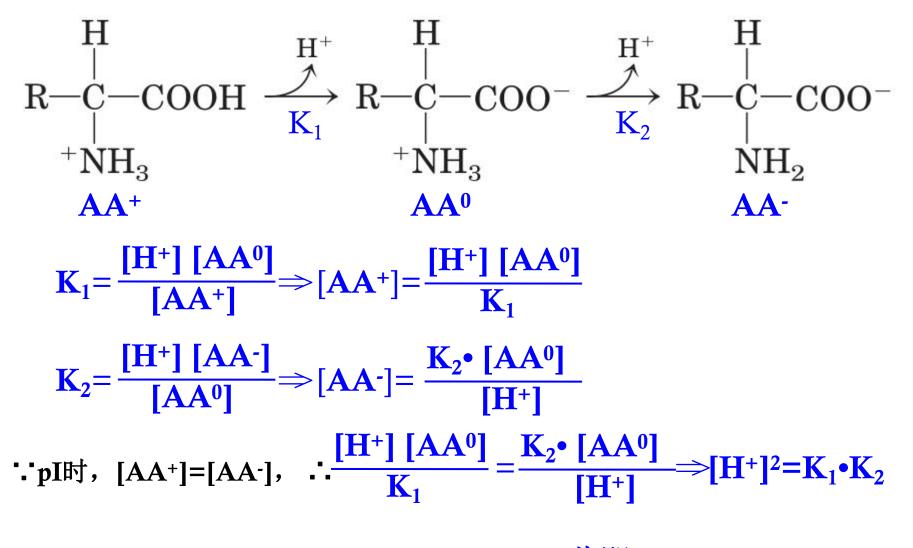

- **3. Acid-base properties of Amino acids and pI**
 - Amino acids has both a basic amine group and an acidic carboxylic acid group
 - ◆In neutral solution (pH7.0), the amino acid contains a negative charge and a positive charge. It is called a zwitterions(兼性离子) or dipolar ions (偶 极离子).


Substances having this dual (acid-base) nature are amphoteric 两性的 and are often called ampholytes (两性电解质)

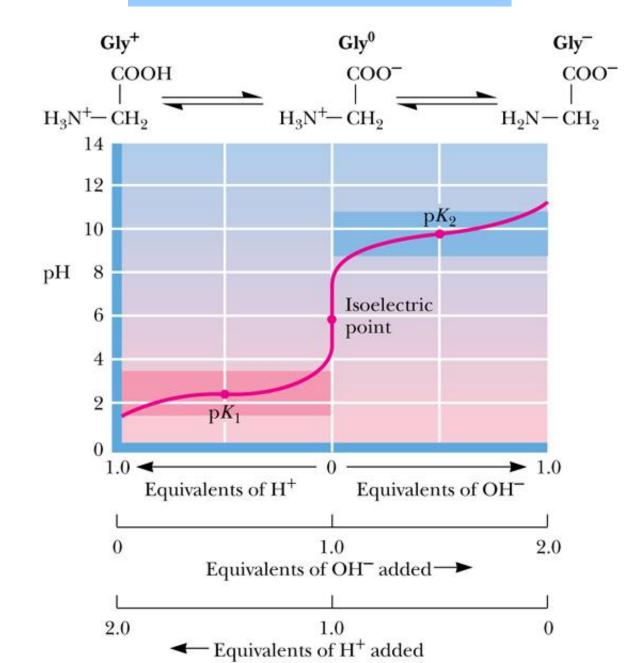
Amino acid zwitterions are amphoteric. They can react as either acids or bases.

◇AAs are all weak polyprotic acids 多元弱酸

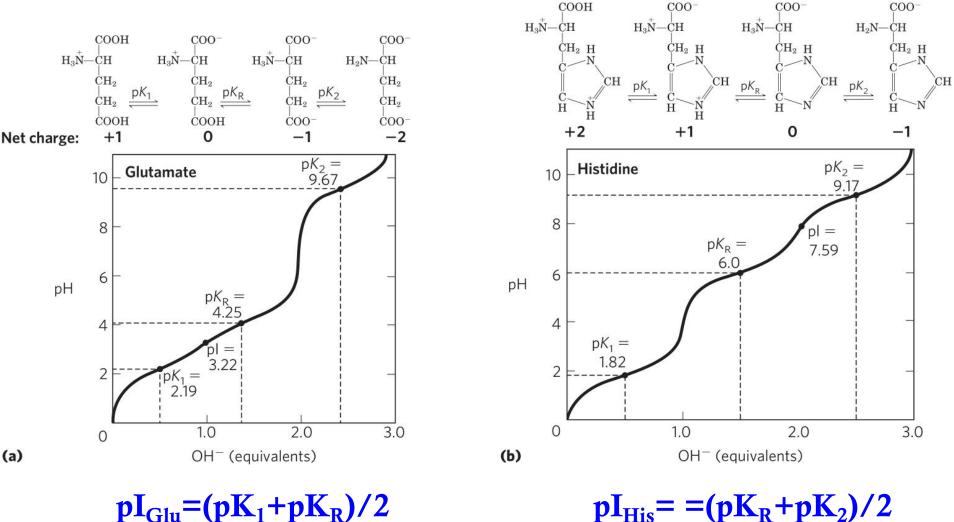
Amino acids have characteristic titration curves (特定的滴定曲线)



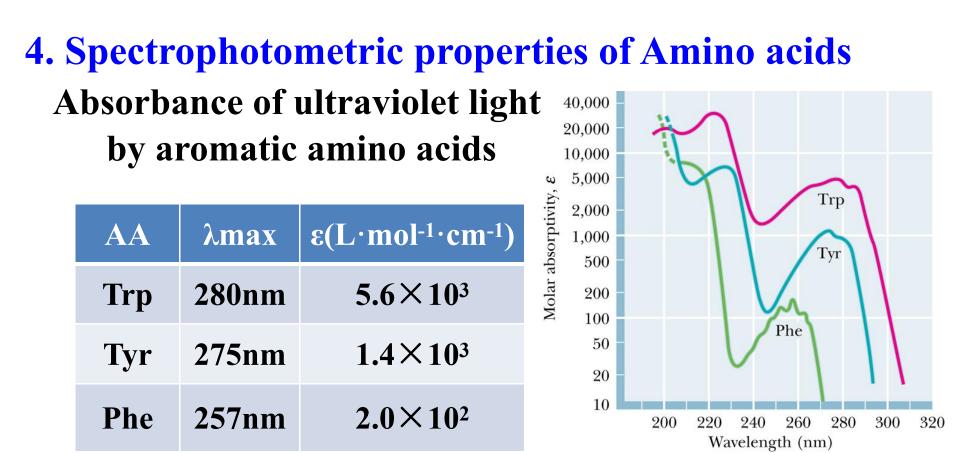
- AAs ionize to various states depending on pH values
- ◆ Isoelectric Point (pI, 等电点) is the characteristic pH at which an amino acid has equal positive and negative charge (the net electric charge is zero)
- AAs in solution at pI are predominantly in dipolar form
- PI is determined by pK (K: dissociation constant of the ionizable groups)


- At any pH below its pI, AA has a net positive charge and will move toward the negative electrode (the cathode).
- At any pH above its pI, AA has a net negative charge and will move toward the positive electrode (the anode).
- The farther the pH of a AA solution is from its pI, the greater the net electric charge of the population of AA molecules.

Calculation of Isoelectric Point


两边取负对数,得 pH=(pK₁+pK₂)/2,此即pI

Titration Curve for Glycine

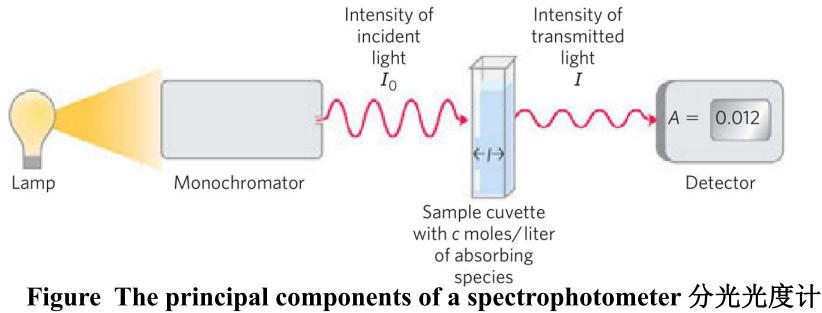


♦ Amino acids with nonionizable R group (R基不电离) ——with similar titration curves as that of Gly ◆Amino acids with ionizable R group (R基电离) ——with more complex titration curves **Only His provides buffering power near neutral pH** because of the R group (pK_R=6.0) (只有His在中性pH 附件有缓冲作用)

Titration Curve for Glutamic Acid and Histidine

 $pI_{Glu} = (pK_1 + pK_R)/2$

They are jointly responsible for the light absorption of proteins at 280nm


Proteins in solution absorb UV light with absorbance maximum at 280nm

Measuring protein content by photospectrometry

Absorption of light by molecules: The Lambert-Beer Law

 $A = \lg I_{\theta} / I = \lg 1 / T = \varepsilon c l$

The expression $\lg(I_0/I)$ is called the absorbance, designated A I_0 is the intensity of the incident light I is the intensity of the transmitted light I/I_0 (the inverse of the ratio in the equation) is the transmittance, T ε is the molar extinction coefficient (in units of liters per mole-centimeter) c is the concentration of the absorbing species (in moles per liter) l is the path length of the light-absorbing sample (in centimeters)

